Mutations in MmpL3 alter membrane potential, hydrophobicity and antibiotic susceptibility in Mycobacterium smegmatis.

نویسندگان

  • Matthew B McNeil
  • Devon Dennison
  • Tanya Parish
چکیده

MmpL3 is a promising target for novel anti-tubercular agents, with numerous compound series identified as MmpL3 inhibitors. Despite this, there is an incomplete understanding of MmpL3 function. Here we show that Mycobacterium smegmatis MmpL3 mutant strains had an altered cell wall hydrophobicity, disrupted membrane potential and growth defects in liquid media. Compensatory mutations that restored normal growth also returned membrane potential to wild-type. M. smegmatis MmpL3 mutant strains were resistant to two anti-tubercular agents, SQ109 and AU1235, but were more sensitive to rifampicin, erythromycin and ampicillin. Exposure of M. smegmatis to AU1235 affected the cell wall composition and increased the potency of rifampicin. However, MmpL3 mutants did not prevent the dissipation of membrane potential following exposure to SQ109. These results demonstrate that in M. smegmatis, MmpL3 contributes to a number of important phenotypes such as membrane potential, cell wall composition, antibiotic susceptibility and fitness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The K+ uptake regulator TrkA controls membrane potential, pH homeostasis and multidrug susceptibility in Mycobacterium smegmatis.

BACKGROUND Rifampicin is an important first-line antibiotic for the treatment of mycobacterial infections. Although most rifampicin-resistant strains arise through mutations in the rpoB gene in bacteria, a proportion of such strains show no rpoB mutations. This suggests that alternative mechanisms are responsible for rifampicin resistance. METHODS We have constructed and analysed a library of...

متن کامل

MmpL Genes Are Associated with Mycolic Acid Metabolism in Mycobacteria and Corynebacteria

Mycolic acids are vital components of the cell wall of the tubercle bacillus Mycobacterium tuberculosis and are required for viability and virulence. While mycolic acid biosynthesis is studied extensively, components involved in mycolate transport remain unidentified. We investigated the role of large membrane proteins encoded by mmpL genes in mycolic acid transport in mycobacteria and the rela...

متن کامل

MmpL3 is the flippase for mycolic acids in mycobacteria.

The defining feature of the mycobacterial outer membrane (OM) is the presence of mycolic acids (MAs), which, in part, render the bilayer extremely hydrophobic and impermeable to external insults, including many antibiotics. Although the biosynthetic pathway of MAs is well studied, the mechanism(s) by which these lipids are transported across the cell envelope is(are) much less known. Mycobacter...

متن کامل

Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment

Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mut...

متن کامل

Characterization of tetracycline resistance mediated by the efflux pump Tap from Mycobacterium fortuitum.

OBJECTIVES The aim of this study was to characterize the efflux pump Tap from Mycobacterium fortuitum, to test its sensitivity to well known efflux inhibitors, to study the interaction between tetracycline and these compounds and to test the ability of these compounds to overcome efflux pump-mediated tetracycline resistance. For all these studies, we produced Tap protein in Mycobacterium smegma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 163 7  شماره 

صفحات  -

تاریخ انتشار 2017